Efficient Markov chain Monte Carlo algorithm for the surface code

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient Markov chain Monte Carlo algorithm for the surface code

Minimum-weight perfect matching (MWPM) has been been the primary classical algorithm for error correction in the surface code, since it is of low runtime complexity and achieves relatively low logical error rates [Phys. Rev. Lett. 108, 180501 (2012)]. A Markov chain Monte Carlo (MCMC) algorithm [Phys. Rev. Lett. 109, 160503 (2012)] is able to achieve lower logical error rates and higher thresho...

متن کامل

Aeolus: A Markov–Chain Monte Carlo code for mapping

Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov–Chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus ...

متن کامل

Markov Chain Monte Carlo

Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...

متن کامل

Markov Chain Monte Carlo

This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.

متن کامل

Markov chain Monte Carlo

One of the simplest and most powerful practical uses of the ergodic theory of Markov chains is in Markov chain Monte Carlo (MCMC). Suppose we wish to simulate from a probability density π (which will be called the target density) but that direct simulation is either impossible or practically infeasible (possibly due to the high dimensionality of π). This generic problem occurs in diverse scient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2014

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.89.022326